Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Skew-constacyclic codes over $\frac{\mathbb{F}_q[v]}{\langle\,v^q-v\,\rangle}$ (1902.10477v1)

Published 27 Feb 2019 in cs.IT, math.AC, math.IT, and math.RA

Abstract: In this paper, the investigation on the algebraic structure of the ring $\frac{\mathbb{F}_q[v]}{\langle\,vq-v\,\rangle}$ and the description of its automorphism group, enable to study the algebraic structure of codes and their dual over this ring. We explore the algebraic structure of skew-constacyclic codes, by using a linear Gray map and we determine their generator polynomials. Necessary and sufficient conditions for the existence of self-dual skew cyclic and self-dual skew negacyclic codes over $\frac{\mathbb{F}_q[v]}{\langle\,vq-v\,\rangle}$ are given.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.