Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to bid in revenue-maximizing auctions (1902.10427v3)

Published 27 Feb 2019 in cs.GT

Abstract: We consider the problem of the optimization of bidding strategies in prior-dependent revenue-maximizing auctions, when the seller fixes the reserve prices based on the bid distributions. Our study is done in the setting where one bidder is strategic. Using a variational approach, we study the complexity of the original objective and we introduce a relaxation of the objective functional in order to use gradient descent methods. Our approach is simple, general and can be applied to various value distributions and revenue-maximizing mechanisms. The new strategies we derive yield massive uplifts compared to the traditional truthfully bidding strategy.

Citations (28)

Summary

We haven't generated a summary for this paper yet.