Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Provable Approximations for Constrained $\ell_p$ Regression (1902.10407v1)

Published 27 Feb 2019 in cs.LG and stat.ML

Abstract: The $\ell_p$ linear regression problem is to minimize $f(x)=||Ax-b||_p$ over $x\in\mathbb{R}d$, where $A\in\mathbb{R}{n\times d}$, $b\in \mathbb{R}n$, and $p>0$. To avoid overfitting and bound $||x||_2$, the constrained $\ell_p$ regression minimizes $f(x)$ over every unit vector $x\in\mathbb{R}d$. This makes the problem non-convex even for the simplest case $d=p=2$. Instead, ridge regression is used to minimize the Lagrange form $f(x)+\lambda ||x||_2$ over $x\in\mathbb{R}d$, which yields a convex problem in the price of calibrating the regularization parameter $\lambda>0$. We provide the first provable constant factor approximation algorithm that solves the constrained $\ell_p$ regression directly, for every constant $p,d\geq 1$. Using core-sets, its running time is $O(n \log n)$ including extensions for streaming and distributed (big) data. In polynomial time, it can handle outliers, $p\in (0,1)$ and minimize $f(x)$ over every $x$ and permutation of rows in $A$. Experimental results are also provided, including open source and comparison to existing software.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.