Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Weighted Maximum Independent Set of Geometric Objects in Turnstile Streams (1902.10328v2)

Published 27 Feb 2019 in cs.DS and cs.CG

Abstract: We study the Maximum Independent Set problem for geometric objects given in the data stream model. A set of geometric objects is said to be independent if the objects are pairwise disjoint. We consider geometric objects in one and two dimensions, i.e., intervals and disks. Let $\alpha$ be the cardinality of the largest independent set. Our goal is to estimate $\alpha$ in a small amount of space, given that the input is received as a one-pass stream. We also consider a generalization of this problem by assigning weights to each object and estimating $\beta$, the largest value of a weighted independent set. We initialize the study of this problem in the turnstile streaming model (insertions and deletions) and provide the first algorithms for estimating $\alpha$ and $\beta$. For unit-length intervals, we obtain a $(2+\epsilon)$-approximation to $\alpha$ and $\beta$ in poly$(\frac{\log(n)}{\epsilon})$ space. We also show a matching lower bound. Combined with the $3/2$-approximation for insertion-only streams by Cabello and Perez-Lanterno [CP15], our result implies a separation between the insertion-only and turnstile model. For unit-radius disks, we obtain a $\left(\frac{8\sqrt{3}}{\pi}\right)$-approximation to $\alpha$ and $\beta$ in poly$(\log(n), \epsilon{-1})$ space, which is closely related to the hexagonal circle packing constant. We provide algorithms for estimating $\alpha$ for arbitrary-length intervals under a bounded intersection assumption and study the parameterized space complexity of estimating $\alpha$ and $\beta$, where the parameter is the ratio of maximum to minimum interval length.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.