Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Leveraging Deep Graph-Based Text Representation for Sentiment Polarity Applications (1902.10247v3)

Published 23 Feb 2019 in cs.CL, cs.LG, and stat.ML

Abstract: Over the last few years, machine learning over graph structures has manifested a significant enhancement in text mining applications such as event detection, opinion mining, and news recommendation. One of the primary challenges in this regard is structuring a graph that encodes and encompasses the features of textual data for the effective machine learning algorithm. Besides, exploration and exploiting of semantic relations is regarded as a principal step in text mining applications. However, most of the traditional text mining methods perform somewhat poor in terms of employing such relations. In this paper, we propose a sentence-level graph-based text representation which includes stop words to consider semantic and term relations. Then, we employ a representation learning approach on the combined graphs of sentences to extract the latent and continuous features of the documents. Eventually, the learned features of the documents are fed into a deep neural network for the sentiment classification task. The experimental results demonstrate that the proposed method substantially outperforms the related sentiment analysis approaches based on several benchmark datasets. Furthermore, our method can be generalized on different datasets without any dependency on pre-trained word embeddings.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube