Papers
Topics
Authors
Recent
2000 character limit reached

Grammar Based Directed Testing of Machine Learning Systems (1902.10027v3)

Published 26 Feb 2019 in cs.LG and cs.AI

Abstract: The massive progress of machine learning has seen its application over a variety of domains in the past decade. But how do we develop a systematic, scalable and modular strategy to validate machine-learning systems? We present, to the best of our knowledge, the first approach, which provides a systematic test framework for machine-learning systems that accepts grammar-based inputs. Our OGMA approach automatically discovers erroneous behaviours in classifiers and leverages these erroneous behaviours to improve the respective models. OGMA leverages inherent robustness properties present in any well trained machine-learning model to direct test generation and thus, implementing a scalable test generation methodology. To evaluate our OGMA approach, we have tested it on three real world NLP classifiers. We have found thousands of erroneous behaviours in these systems. We also compare OGMA with a random test generation approach and observe that OGMA is more effective than such random test generation by up to 489%.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

GitHub