Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Grammar Based Directed Testing of Machine Learning Systems (1902.10027v3)

Published 26 Feb 2019 in cs.LG and cs.AI

Abstract: The massive progress of machine learning has seen its application over a variety of domains in the past decade. But how do we develop a systematic, scalable and modular strategy to validate machine-learning systems? We present, to the best of our knowledge, the first approach, which provides a systematic test framework for machine-learning systems that accepts grammar-based inputs. Our OGMA approach automatically discovers erroneous behaviours in classifiers and leverages these erroneous behaviours to improve the respective models. OGMA leverages inherent robustness properties present in any well trained machine-learning model to direct test generation and thus, implementing a scalable test generation methodology. To evaluate our OGMA approach, we have tested it on three real world NLP classifiers. We have found thousands of erroneous behaviours in these systems. We also compare OGMA with a random test generation approach and observe that OGMA is more effective than such random test generation by up to 489%.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube