Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A structure of 1-planar graph and its applications to coloring problems (1902.08945v1)

Published 24 Feb 2019 in math.CO and cs.DM

Abstract: A graph is 1-planar if it can be drawn on a plane so that each edge is crossed by at most one other edge. In this paper, we first give a useful structural theorem for 1-planar graphs, and then apply it to the list edge and list total coloring, the $(p,1)$-total labelling, and the equitable edge coloring of 1-planar graphs. More precisely, we verify the well-known List Edge Coloring Conjecture and List Total Coloring Conjecture for 1-planar graph with maximum degree at least 18, prove that the $(p,1)$-total labelling number of every 1-planar graph $G$ is at most $\Delta(G)+2p-2$ provided that $\Delta(G)\geq 8p+2$ and $p\geq 2$, and show that every 1-planar graph has an equitable edge coloring with $k$ colors for any integer $k\geq 18$. These three results respectively generalize the main theorems of three different previously published papers.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)