Papers
Topics
Authors
Recent
2000 character limit reached

3D Guided Fine-Grained Face Manipulation (1902.08900v1)

Published 24 Feb 2019 in cs.CV

Abstract: We present a method for fine-grained face manipulation. Given a face image with an arbitrary expression, our method can synthesize another arbitrary expression by the same person. This is achieved by first fitting a 3D face model and then disentangling the face into a texture and a shape. We then learn different networks in these two spaces. In the texture space, we use a conditional generative network to change the appearance, and carefully design input formats and loss functions to achieve the best results. In the shape space, we use a fully connected network to predict the accurate shapes and use the available depth data for supervision. Both networks are conditioned on expression coefficients rather than discrete labels, allowing us to generate an unlimited amount of expressions. We show the superiority of this disentangling approach through both quantitative and qualitative studies. In a user study, our method is preferred in 85% of cases when compared to the most recent work. When compared to the ground truth, annotators cannot reliably distinguish between our synthesized images and real images, preferring our method in 53% of the cases.

Citations (93)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.