Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

$\ell_1$-sparsity Approximation Bounds for Packing Integer Programs (1902.08698v1)

Published 22 Feb 2019 in cs.DS

Abstract: We consider approximation algorithms for packing integer programs (PIPs) of the form $\max{\langle c, x\rangle : Ax \le b, x \in {0,1}n}$ where $c$, $A$, and $b$ are nonnegative. We let $W = \min_{i,j} b_i / A_{i,j}$ denote the width of $A$ which is at least $1$. Previous work by Bansal et al. \cite{bansal-sparse} obtained an $\Omega(\frac{1}{\Delta_0{1/\lfloor W \rfloor}})$-approximation ratio where $\Delta_0$ is the maximum number of nonzeroes in any column of $A$ (in other words the $\ell_0$-column sparsity of $A$). They raised the question of obtaining approximation ratios based on the $\ell_1$-column sparsity of $A$ (denoted by $\Delta_1$) which can be much smaller than $\Delta_0$. Motivated by recent work on covering integer programs (CIPs) \cite{cq,chs-16} we show that simple algorithms based on randomized rounding followed by alteration, similar to those of Bansal et al. \cite{bansal-sparse} (but with a twist), yield approximation ratios for PIPs based on $\Delta_1$. First, following an integrality gap example from \cite{bansal-sparse}, we observe that the case of $W=1$ is as hard as maximum independent set even when $\Delta_1 \le 2$. In sharp contrast to this negative result, as soon as width is strictly larger than one, we obtain positive results via the natural LP relaxation. For PIPs with width $W = 1 + \epsilon$ where $\epsilon \in (0,1]$, we obtain an $\Omega(\epsilon2/\Delta_1)$-approximation. In the large width regime, when $W \ge 2$, we obtain an $\Omega((\frac{1}{1 + \Delta_1/W}){1/(W-1)})$-approximation. We also obtain a $(1-\epsilon)$-approximation when $W = \Omega(\frac{\log (\Delta_1/\epsilon)}{\epsilon2})$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.