Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improving Multilingual Sentence Embedding using Bi-directional Dual Encoder with Additive Margin Softmax (1902.08564v2)

Published 22 Feb 2019 in cs.CL

Abstract: In this paper, we present an approach to learn multilingual sentence embeddings using a bi-directional dual-encoder with additive margin softmax. The embeddings are able to achieve state-of-the-art results on the United Nations (UN) parallel corpus retrieval task. In all the languages tested, the system achieves P@1 of 86% or higher. We use pairs retrieved by our approach to train NMT models that achieve similar performance to models trained on gold pairs. We explore simple document-level embeddings constructed by averaging our sentence embeddings. On the UN document-level retrieval task, document embeddings achieve around 97% on P@1 for all experimented language pairs. Lastly, we evaluate the proposed model on the BUCC mining task. The learned embeddings with raw cosine similarity scores achieve competitive results compared to current state-of-the-art models, and with a second-stage scorer we achieve a new state-of-the-art level on this task.

Citations (112)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.