Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

E-LSTM-D: A Deep Learning Framework for Dynamic Network Link Prediction (1902.08329v1)

Published 22 Feb 2019 in cs.SI and cs.LG

Abstract: Predicting the potential relations between nodes in networks, known as link prediction, has long been a challenge in network science. However, most studies just focused on link prediction of static network, while real-world networks always evolve over time with the occurrence and vanishing of nodes and links. Dynamic network link prediction thus has been attracting more and more attention since it can better capture the evolution nature of networks, but still most algorithms fail to achieve satisfied prediction accuracy. Motivated by the excellent performance of Long Short-Term Memory (LSTM) in processing time series, in this paper, we propose a novel Encoder-LSTM-Decoder (E-LSTM-D) deep learning model to predict dynamic links end to end. It could handle long term prediction problems, and suits the networks of different scales with fine-tuned structure. To the best of our knowledge, it is the first time that LSTM, together with an encoder-decoder architecture, is applied to link prediction in dynamic networks. This new model is able to automatically learn structural and temporal features in a unified framework, which can predict the links that never appear in the network before. The extensive experiments show that our E-LSTM-D model significantly outperforms newly proposed dynamic network link prediction methods and obtain the state-of-the-art results.

Citations (134)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.