Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

Bayes Optimal Early Stopping Policies for Black-Box Optimization (1902.08285v1)

Published 21 Feb 2019 in cs.LG and stat.ML

Abstract: We derive an optimal policy for adaptively restarting a randomized algorithm, based on observed features of the run-so-far, so as to minimize the expected time required for the algorithm to successfully terminate. Given a suitable Bayesian prior, this result can be used to select the optimal black-box optimization algorithm from among a large family of algorithms that includes random search, Successive Halving, and Hyperband. On CIFAR-10 and ImageNet hyperparameter tuning problems, the proposed policies offer up to a factor of 13 improvement over random search in terms of expected time to reach a given target accuracy, and up to a factor of 3 improvement over a baseline adaptive policy that terminates a run whenever its accuracy is below-median.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.