Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Arboricity Captures the Complexity of Sampling Edges (1902.08086v1)

Published 21 Feb 2019 in cs.CC and cs.DS

Abstract: In this paper, we revisit the problem of sampling edges in an unknown graph $G = (V, E)$ from a distribution that is (pointwise) almost uniform over $E$. We consider the case where there is some a priori upper bound on the arboriciy of $G$. Given query access to a graph $G$ over $n$ vertices and of average degree $d$ and arboricity at most $\alpha$, we design an algorithm that performs $O!\left(\frac{\alpha}{d} \cdot \frac{\log3 n}{\varepsilon}\right)$ queries in expectation and returns an edge in the graph such that every edge $e \in E$ is sampled with probability $(1 \pm \varepsilon)/m$. The algorithm performs two types of queries: degree queries and neighbor queries. We show that the upper bound is tight (up to poly-logarithmic factors and the dependence in $\varepsilon$), as $\Omega!\left(\frac{\alpha}{d} \right)$ queries are necessary for the easier task of sampling edges from any distribution over $E$ that is close to uniform in total variational distance. We also prove that even if $G$ is a tree (i.e., $\alpha = 1$ so that $\frac{\alpha}{d}=\Theta(1)$), $\Omega\left(\frac{\log n}{\log\log n}\right)$ queries are necessary to sample an edge from any distribution that is pointwise close to uniform, thus establishing that a $\mathrm{poly}(\log n)$ factor is necessary for constant $\alpha$. Finally we show how our algorithm can be applied to obtain a new result on approximately counting subgraphs, based on the recent work of Assadi, Kapralov, and Khanna (ITCS, 2019).

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.