Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Reconfiguration Graph for Vertex Colourings of Weakly Chordal Graphs (1902.08071v2)

Published 21 Feb 2019 in math.CO and cs.DM

Abstract: The reconfiguration graph $R_k(G)$ of the $k$-colourings of a graph $G$ contains as its vertex set the $k$-colourings of $G$ and two colourings are joined by an edge if they differ in colour on just one vertex of $G$. We show that for each $k \geq 3$ there is a $k$-colourable weakly chordal graph $G$ such that $R_{k+1}(G)$ is disconnected. We also introduce a subclass of $k$-colourable weakly chordal graphs which we call $k$-colourable compact graphs and show that for each $k$-colourable compact graph $G$ on $n$ vertices, $R_{k+1}(G)$ has diameter $O(n2)$. We show that this class contains all $k$-colourable co-chordal graphs and when $k = 3$ all $3$-colourable $(P_5, \overline{P_5}, C_5)$-free graphs. We also mention some open problems.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.