Papers
Topics
Authors
Recent
2000 character limit reached

Curiosity-Driven Experience Prioritization via Density Estimation (1902.08039v3)

Published 20 Feb 2019 in cs.LG, cs.AI, and stat.ML

Abstract: In Reinforcement Learning (RL), an agent explores the environment and collects trajectories into the memory buffer for later learning. However, the collected trajectories can easily be imbalanced with respect to the achieved goal states. The problem of learning from imbalanced data is a well-known problem in supervised learning, but has not yet been thoroughly researched in RL. To address this problem, we propose a novel Curiosity-Driven Prioritization (CDP) framework to encourage the agent to over-sample those trajectories that have rare achieved goal states. The CDP framework mimics the human learning process and focuses more on relatively uncommon events. We evaluate our methods using the robotic environment provided by OpenAI Gym. The environment contains six robot manipulation tasks. In our experiments, we combined CDP with Deep Deterministic Policy Gradient (DDPG) with or without Hindsight Experience Replay (HER). The experimental results show that CDP improves both performance and sample-efficiency of reinforcement learning agents, compared to state-of-the-art methods.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.