Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Gradient Scheduling with Global Momentum for Non-IID Data Distributed Asynchronous Training (1902.07848v4)

Published 21 Feb 2019 in cs.DC and cs.LG

Abstract: Distributed asynchronous offline training has received widespread attention in recent years because of its high performance on large-scale data and complex models. As data are distributed from cloud-centric to edge nodes, a big challenge for distributed machine learning systems is how to handle native and natural non-independent and identically distributed (non-IID) data for training. Previous asynchronous training methods do not have a satisfying performance on non-IID data because it would result in that the training process fluctuates greatly which leads to an abnormal convergence. We propose a gradient scheduling algorithm with partly averaged gradients and global momentum (GSGM) for non-IID data distributed asynchronous training. Our key idea is to apply global momentum and local average to the biased gradient after scheduling, in order to make the training process steady. Experimental results show that for non-IID data training under the same experimental conditions, GSGM on popular optimization algorithms can achieve a 20% increase in training stability with a slight improvement in accuracy on Fashion-Mnist and CIFAR-10 datasets. Meanwhile, when expanding distributed scale on CIFAR-100 dataset that results in sparse data distribution, GSGM can perform a 37% improvement on training stability. Moreover, only GSGM can converge well when the number of computing nodes grows to 30, compared to the state-of-the-art distributed asynchronous algorithms. At the same time, GSGM is robust to different degrees of non-IID data.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.