Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Perceptual Quality-preserving Black-Box Attack against Deep Learning Image Classifiers (1902.07776v3)

Published 20 Feb 2019 in cs.CV

Abstract: Deep neural networks provide unprecedented performance in all image classification problems, taking advantage of huge amounts of data available for training. Recent studies, however, have shown their vulnerability to adversarial attacks, spawning an intense research effort in this field. With the aim of building better systems, new countermeasures and stronger attacks are proposed by the day. On the attacker's side, there is growing interest for the realistic black-box scenario, in which the user has no access to the neural network parameters. The problem is to design efficient attacks which mislead the neural network without compromising image quality. In this work, we propose to perform the black-box attack along a low-distortion path, so as to improve both the attack efficiency and the perceptual quality of the adversarial image. Numerical experiments on real-world systems prove the effectiveness of the proposed approach, both in benchmark classification tasks and in key applications in biometrics and forensics.

Citations (29)

Summary

We haven't generated a summary for this paper yet.