Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning efficient haptic shape exploration with a rigid tactile sensor array (1902.07501v4)

Published 20 Feb 2019 in cs.RO and cs.AI

Abstract: Haptic exploration is a key skill for both robots and humans to discriminate and handle unknown objects or to recognize familiar objects. Its active nature is evident in humans who from early on reliably acquire sophisticated sensory-motor capabilities for active exploratory touch and directed manual exploration that associates surfaces and object properties with their spatial locations. This is in stark contrast to robotics. In this field, the relative lack of good real-world interaction models - along with very restricted sensors and a scarcity of suitable training data to leverage machine learning methods - has so far rendered haptic exploration a largely underdeveloped skill. In the present work, we connect recent advances in recurrent models of visual attention with previous insights about the organisation of human haptic search behavior, exploratory procedures and haptic glances for a novel architecture that learns a generative model of haptic exploration in a simulated three-dimensional environment. The proposed algorithm simultaneously optimizes main perception-action loop components: feature extraction, integration of features over time, and the control strategy, while continuously acquiring data online. We perform a multi-module neural network training, including a feature extractor and a recurrent neural network module aiding pose control for storing and combining sequential sensory data. The resulting haptic meta-controller for the rigid $16 \times 16$ tactile sensor array moving in a physics-driven simulation environment, called the Haptic Attention Model, performs a sequence of haptic glances, and outputs corresponding force measurements. The resulting method has been successfully tested with four different objects. It achieved results close to $100 \%$ while performing object contour exploration that has been optimized for its own sensor morphology.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.