Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Towards a Robust Deep Neural Network in Texts: A Survey (1902.07285v6)

Published 12 Feb 2019 in cs.CL, cs.CR, and cs.LG

Abstract: Deep neural networks (DNNs) have achieved remarkable success in various tasks (e.g., image classification, speech recognition, and NLP). However, researchers have demonstrated that DNN-based models are vulnerable to adversarial examples, which cause erroneous predictions by adding imperceptible perturbations into legitimate inputs. Recently, studies have revealed adversarial examples in the text domain, which could effectively evade various DNN-based text analyzers and further bring the threats of the proliferation of disinformation. In this paper, we give a comprehensive survey on the existing studies of adversarial techniques for generating adversarial texts written by both English and Chinese characters and the corresponding defense methods. More importantly, we hope that our work could inspire future studies to develop more robust DNN-based text analyzers against known and unknown adversarial techniques. We classify the existing adversarial techniques for crafting adversarial texts based on the perturbation units, helping to better understand the generation of adversarial texts and build robust models for defense. In presenting the taxonomy of adversarial attacks and defenses in the text domain, we introduce the adversarial techniques from the perspective of different NLP tasks. Finally, we discuss the existing challenges of adversarial attacks and defenses in texts and present the future research directions in this emerging and challenging field.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.