Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A novel repetition normalized adversarial reward for headline generation (1902.07110v1)

Published 19 Feb 2019 in cs.CL

Abstract: While reinforcement learning can effectively improve language generation models, it often suffers from generating incoherent and repetitive phrases \cite{paulus2017deep}. In this paper, we propose a novel repetition normalized adversarial reward to mitigate these problems. Our repetition penalized reward can greatly reduce the repetition rate and adversarial training mitigates generating incoherent phrases. Our model significantly outperforms the baseline model on ROUGE-1\,(+3.24), ROUGE-L\,(+2.25), and a decreased repetition-rate (-4.98\%).

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)