Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Stochastic Conditional Gradient++ (1902.06992v4)

Published 19 Feb 2019 in math.OC and cs.LG

Abstract: In this paper, we consider the general non-oblivious stochastic optimization where the underlying stochasticity may change during the optimization procedure and depends on the point at which the function is evaluated. We develop Stochastic Frank-Wolfe++ ($\text{SFW}{++} $), an efficient variant of the conditional gradient method for minimizing a smooth non-convex function subject to a convex body constraint. We show that $\text{SFW}{++} $ converges to an $\epsilon$-first order stationary point by using $O(1/\epsilon3)$ stochastic gradients. Once further structures are present, $\text{SFW}{++}$'s theoretical guarantees, in terms of the convergence rate and quality of its solution, improve. In particular, for minimizing a convex function, $\text{SFW}{++} $ achieves an $\epsilon$-approximate optimum while using $O(1/\epsilon2)$ stochastic gradients. It is known that this rate is optimal in terms of stochastic gradient evaluations. Similarly, for maximizing a monotone continuous DR-submodular function, a slightly different form of $\text{SFW}{++} $, called Stochastic Continuous Greedy++ ($\text{SCG}{++} $), achieves a tight $[(1-1/e)\text{OPT} -\epsilon]$ solution while using $O(1/\epsilon2)$ stochastic gradients. Through an information theoretic argument, we also prove that $\text{SCG}{++} $'s convergence rate is optimal. Finally, for maximizing a non-monotone continuous DR-submodular function, we can achieve a $[(1/e)\text{OPT} -\epsilon]$ solution by using $O(1/\epsilon2)$ stochastic gradients. We should highlight that our results and our novel variance reduction technique trivially extend to the standard and easier oblivious stochastic optimization settings for (non-)covex and continuous submodular settings.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.