Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Asymptotic Limits of Privacy in Bayesian Time Series Matching (1902.06404v1)

Published 18 Feb 2019 in cs.IT and math.IT

Abstract: Various modern and highly popular applications make use of user data traces in order to offer specific services, often for the purpose of improving the user's experience while using such applications. However, even when user data is privatized by employing privacy-preserving mechanisms (PPM), users' privacy may still be compromised by an external party who leverages statistical matching methods to match users' traces with their previous activities. In this paper, we obtain the theoretical bounds on user privacy for situations in which user traces are matchable to sequences of prior behavior, despite anonymization of data time series. We provide both achievability and converse results for the case where the data trace of each user consists of independent and identically distributed (i.i.d.) random samples drawn from a multinomial distribution, as well as the case that the users' data points are dependent over time and the data trace of each user is governed by a Markov chain model.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.