Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

SCEF: A Support-Confidence-aware Embedding Framework for Knowledge Graph Refinement (1902.06377v2)

Published 18 Feb 2019 in cs.AI and cs.CL

Abstract: Knowledge graph (KG) refinement mainly aims at KG completion and correction (i.e., error detection). However, most conventional KG embedding models only focus on KG completion with an unreasonable assumption that all facts in KG hold without noises, ignoring error detection which also should be significant and essential for KG refinement.In this paper, we propose a novel support-confidence-aware KG embedding framework (SCEF), which implements KG completion and correction simultaneously by learning knowledge representations with both triple support and triple confidence. Specifically, we build model energy function by incorporating conventional translation-based model with support and confidence. To make our triple support-confidence more sufficient and robust, we not only consider the internal structural information in KG, studying the approximate relation entailment as triple confidence constraints, but also the external textual evidence, proposing two kinds of triple supports with entity types and descriptions respectively.Through extensive experiments on real-world datasets, we demonstrate SCEF's effectiveness.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.