Papers
Topics
Authors
Recent
2000 character limit reached

Unsupervised Domain Adaptation using Deep Networks with Cross-Grafted Stacks (1902.06328v2)

Published 17 Feb 2019 in cs.CV

Abstract: Current deep domain adaptation methods used in computer vision have mainly focused on learning discriminative and domain-invariant features across different domains. In this paper, we present a novel approach that bridges the domain gap by projecting the source and target domains into a common association space through an unsupervised ``cross-grafted representation stacking'' (CGRS) mechanism. Specifically, we construct variational auto-encoders (VAE) for the two domains, and form bidirectional associations by cross-grafting the VAEs' decoder stacks. Furthermore, generative adversarial networks (GAN) are employed for label alignment (LA), mapping the target domain data to the known label space of the source domain. The overall adaptation process hence consists of three phases: feature representation learning by VAEs, association generation, and association label alignment by GANs. Experimental results demonstrate that our CGRS-LA approach outperforms the state-of-the-art on a number of unsupervised domain adaptation benchmarks.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.