Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Neural Network-Based Dynamic Threshold Detection for Non-Volatile Memories (1902.06289v1)

Published 17 Feb 2019 in cs.IT, cs.LG, and math.IT

Abstract: The memory physics induced unknown offset of the channel is a critical and difficult issue to be tackled for many non-volatile memories (NVMs). In this paper, we first propose novel neural network (NN) detectors by using the multilayer perceptron (MLP) network and the recurrent neural network (RNN), which can effectively tackle the unknown offset of the channel. However, compared with the conventional threshold detector, the NN detectors will incur a significant delay of the read latency and more power consumption. Therefore, we further propose a novel dynamic threshold detector (DTD), whose detection threshold can be derived based on the outputs of the proposed NN detectors. In this way, the NN-based detection only needs to be invoked when the error correction code (ECC) decoder fails, or periodically when the system is in the idle state. Thereafter, the threshold detector will still be adopted by using the adjusted detection threshold derived base on the outputs of the NN detector, until a further adjustment of the detection threshold is needed. Simulation results demonstrate that the proposed DTD based on the RNN detection can achieve the error performance of the optimum detector, without the prior knowledge of the channel.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.