Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Real-Time Trajectory Planning for AGV in the Presence of Moving Obstacles: A First-Search-Then-Optimization Approach (1902.06201v6)

Published 17 Feb 2019 in cs.RO

Abstract: This paper focuses on automatic guided vehicle (AGV) trajectory planning in the presence of moving obstacles with known but complicated trajectories. In order to achieve good solution precision, optimality and unification, the concerned task should be formulated as an optimal control problem, and then discretized into a nonlinear programming (NLP) problem, which is numerically optimized thereafter. Without a near-feasible or near-optimal initial guess, the NLP-solving process is usually slow. With the purpose of accelerating the NLP solution, a search-based rough planning stage is added to generate appropriate initial guesses. Concretely, a continuous state space is formulated, which consists of Cartesian product of 2D configuration space and a time dimension. The rough trajectory is generated by a graph-search based planner, namely the A* algorithm. Herein, the nodes in the graph are constructed by discretizing the aforementioned continuous spatio-temporal space. Through this first-search-then-optimization framework, optimal solutions to unified trajectory planning problems can be obtained fast. Simulations have been conducted to verify the real-time performance of our proposal.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.