Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Finding any given 2-factor in sparse pseudorandom graphs efficiently (1902.06164v1)

Published 16 Feb 2019 in math.CO and cs.DM

Abstract: Given an $n$-vertex pseudorandom graph $G$ and an $n$-vertex graph $H$ with maximum degree at most two, we wish to find a copy of $H$ in $G$, i.e.\ an embedding $\varphi\colon V(H)\to V(G)$ so that $\varphi(u)\varphi(v)\in E(G)$ for all $uv\in E(H)$. Particular instances of this problem include finding a triangle-factor and finding a Hamilton cycle in $G$. Here, we provide a deterministic polynomial time algorithm that finds a given $H$ in any suitably pseudorandom graph $G$. The pseudorandom graphs we consider are $(p,\lambda)$-bijumbled graphs of minimum degree which is a constant proportion of the average degree, i.e.\ $\Omega(pn)$. A $(p,\lambda)$-bijumbled graph is characterised through the discrepancy property: $\left|e(A,B)-p|A||B|\right |<\lambda\sqrt{|A||B|}$ for any two sets of vertices $A$ and $B$. Our condition $\lambda=O(p2n/\log n)$ on bijumbledness is within a log factor from being tight and provides a positive answer to a recent question of Nenadov. We combine novel variants of the absorption-reservoir method, a powerful tool from extremal graph theory and random graphs. Our approach is based on that of Nenadov (\emph{Bulletin of the London Mathematical Society}, to appear) and on ours (arXiv:1806.01676), together with additional ideas and simplifications.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.