Papers
Topics
Authors
Recent
2000 character limit reached

Local Differential Privacy in Decentralized Optimization (1902.06101v2)

Published 16 Feb 2019 in math.OC, cs.CR, and cs.LG

Abstract: Privacy concerns with sensitive data are receiving increasing attention. In this paper, we study local differential privacy (LDP) in interactive decentralized optimization. By constructing random local aggregators, we propose a framework to amplify LDP by a constant. We take Alternating Direction Method of Multipliers (ADMM), and decentralized gradient descent as two concrete examples, where experiments support our theory. In an asymptotic view, we address the following question: Under LDP, is it possible to design a distributed private minimizer for arbitrary closed convex constraints with utility loss not explicitly dependent on dimensionality? As an affiliated result, we also show that with merely linear secret sharing, information theoretic privacy is achievable for bounded colluding agents.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.