Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
11 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Heavy-tailed kernels reveal a finer cluster structure in t-SNE visualisations (1902.05804v2)

Published 15 Feb 2019 in cs.LG and stat.ML

Abstract: T-distributed stochastic neighbour embedding (t-SNE) is a widely used data visualisation technique. It differs from its predecessor SNE by the low-dimensional similarity kernel: the Gaussian kernel was replaced by the heavy-tailed Cauchy kernel, solving the "crowding problem" of SNE. Here, we develop an efficient implementation of t-SNE for a $t$-distribution kernel with an arbitrary degree of freedom $\nu$, with $\nu\to\infty$ corresponding to SNE and $\nu=1$ corresponding to the standard t-SNE. Using theoretical analysis and toy examples, we show that $\nu<1$ can further reduce the crowding problem and reveal finer cluster structure that is invisible in standard t-SNE. We further demonstrate the striking effect of heavier-tailed kernels on large real-life data sets such as MNIST, single-cell RNA-sequencing data, and the HathiTrust library. We use domain knowledge to confirm that the revealed clusters are meaningful. Overall, we argue that modifying the tail heaviness of the t-SNE kernel can yield additional insight into the cluster structure of the data.

Citations (33)

Summary

We haven't generated a summary for this paper yet.