Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dynamic Layer Aggregation for Neural Machine Translation with Routing-by-Agreement (1902.05770v1)

Published 15 Feb 2019 in cs.CL and cs.AI

Abstract: With the promising progress of deep neural networks, layer aggregation has been used to fuse information across layers in various fields, such as computer vision and machine translation. However, most of the previous methods combine layers in a static fashion in that their aggregation strategy is independent of specific hidden states. Inspired by recent progress on capsule networks, in this paper we propose to use routing-by-agreement strategies to aggregate layers dynamically. Specifically, the algorithm learns the probability of a part (individual layer representations) assigned to a whole (aggregated representations) in an iterative way and combines parts accordingly. We implement our algorithm on top of the state-of-the-art neural machine translation model TRANSFORMER and conduct experiments on the widely-used WMT14 English-German and WMT17 Chinese-English translation datasets. Experimental results across language pairs show that the proposed approach consistently outperforms the strong baseline model and a representative static aggregation model.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.