Coalgebra Learning via Duality (1902.05762v2)
Abstract: Automata learning is a popular technique for inferring minimal automata through membership and equivalence queries. In this paper, we generalise learning to the theory of coalgebras. The approach relies on the use of logical formulas as tests, based on a dual adjunction between states and logical theories. This allows us to learn, e.g., labelled transition systems, using Hennessy-Milner logic. Our main contribution is an abstract learning algorithm, together with a proof of correctness and termination.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.