Papers
Topics
Authors
Recent
2000 character limit reached

Bi-directional Value Learning for Risk-aware Planning Under Uncertainty: Extended Version (1902.05698v2)

Published 15 Feb 2019 in cs.RO

Abstract: Decision-making under uncertainty is a crucial ability for autonomous systems. In its most general form, this problem can be formulated as a Partially Observable Markov Decision Process (POMDP). The solution policy of a POMDP can be implicitly encoded as a value function. In partially observable settings, the value function is typically learned via forward simulation of the system evolution. Focusing on accurate and long-range risk assessment, we propose a novel method, where the value function is learned in different phases via a bi-directional search in belief space. A backward value learning process provides a long-range and risk-aware base policy. A forward value learning process ensures local optimality and updates the policy via forward simulations. We consider a class of scalable and continuous-space rover navigation problems (RNP) to assess the safety, scalability, and optimality of the proposed algorithm. The results demonstrate the capabilities of the proposed algorithm in evaluating long-range risk/safety of the planner while addressing continuous problems with long planning horizons.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.