Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Classification with unknown class-conditional label noise on non-compact feature spaces (1902.05627v2)

Published 14 Feb 2019 in stat.ML and cs.LG

Abstract: We investigate the problem of classification in the presence of unknown class-conditional label noise in which the labels observed by the learner have been corrupted with some unknown class dependent probability. In order to obtain finite sample rates, previous approaches to classification with unknown class-conditional label noise have required that the regression function is close to its extrema on sets of large measure. We shall consider this problem in the setting of non-compact metric spaces, where the regression function need not attain its extrema. In this setting we determine the minimax optimal learning rates (up to logarithmic factors). The rate displays interesting threshold behaviour: When the regression function approaches its extrema at a sufficient rate, the optimal learning rates are of the same order as those obtained in the label-noise free setting. If the regression function approaches its extrema more gradually then classification performance necessarily degrades. In addition, we present an adaptive algorithm which attains these rates without prior knowledge of either the distributional parameters or the local density. This identifies for the first time a scenario in which finite sample rates are achievable in the label noise setting, but they differ from the optimal rates without label noise.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.