Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Solving Complex Quadratic Systems with Full-Rank Random Matrices (1902.05612v4)

Published 14 Feb 2019 in cs.IT and math.IT

Abstract: We tackle the problem of recovering a complex signal $\boldsymbol x\in\mathbb{C}n$ from quadratic measurements of the form $y_i=\boldsymbol x*\boldsymbol A_i\boldsymbol x$, where $\boldsymbol A_i$ is a full-rank, complex random measurement matrix whose entries are generated from a rotation-invariant sub-Gaussian distribution. We formulate it as the minimization of a nonconvex loss. This problem is related to the well understood phase retrieval problem where the measurement matrix is a rank-1 positive semidefinite matrix. Here we study the general full-rank case which models a number of key applications such as molecular geometry recovery from distance distributions and compound measurements in phaseless diffractive imaging. Most prior works either address the rank-1 case or focus on real measurements. The several papers that address the full-rank complex case adopt the computationally-demanding semidefinite relaxation approach. In this paper we prove that the general class of problems with rotation-invariant sub-Gaussian measurement models can be efficiently solved with high probability via the standard framework comprising a spectral initialization followed by iterative Wirtinger flow updates on a nonconvex loss. Numerical experiments on simulated data corroborate our theoretical analysis.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.