Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Convergence analysis of Tikhonov regularization for non-linear statistical inverse learning problems (1902.05404v2)

Published 14 Feb 2019 in math.ST, stat.ML, and stat.TH

Abstract: We study a non-linear statistical inverse learning problem, where we observe the noisy image of a quantity through a non-linear operator at some random design points. We consider the widely used Tikhonov regularization (or method of regularization, MOR) approach to reconstruct the estimator of the quantity for the non-linear ill-posed inverse problem. The estimator is defined as the minimizer of a Tikhonov functional, which is the sum of a data misfit term and a quadratic penalty term. We develop a theoretical analysis for the minimizer of the Tikhonov regularization scheme using the ansatz of reproducing kernel Hilbert spaces. We discuss optimal rates of convergence for the proposed scheme, uniformly over classes of admissible solutions, defined through appropriate source conditions.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.