Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

3D Graph Embedding Learning with a Structure-aware Loss Function for Point Cloud Semantic Instance Segmentation (1902.05247v1)

Published 14 Feb 2019 in cs.CV

Abstract: This paper introduces a novel approach for 3D semantic instance segmentation on point clouds. A 3D convolutional neural network called submanifold sparse convolutional network is used to generate semantic predictions and instance embeddings simultaneously. To obtain discriminative embeddings for each 3D instance, a structure-aware loss function is proposed which considers both the structure information and the embedding information. To get more consistent embeddings for each 3D instance, attention-based k nearest neighbour (KNN) is proposed to assign different weights for different neighbours. Based on the attention-based KNN, we add a graph convolutional network after the sparse convolutional network to get refined embeddings. Our network can be trained end-to-end. A simple mean-shift algorithm is utilized to cluster refined embeddings to get final instance predictions. As a result, our framework can output both the semantic prediction and the instance prediction. Experiments show that our approach outperforms all state-of-art methods on ScanNet benchmark and NYUv2 dataset.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.