Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 138 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Conversion from RLBWT to LZ77 (1902.05224v1)

Published 14 Feb 2019 in cs.DS

Abstract: Converting a compressed format of a string into another compressed format without an explicit decompression is one of the central research topics in string processing. We discuss the problem of converting the run-length Burrows-Wheeler Transform (RLBWT) of a string to Lempel-Ziv 77 (LZ77) phrases of the reversed string. The first results with Policriti and Prezza's conversion algorithm [Algorithmica 2018] were $O(n \log r)$ time and $O(r)$ working space for length of the string $n$, number of runs $r$ in the RLBWT, and number of LZ77 phrases $z$. Recent results with Kempa's conversion algorithm [SODA 2019] are $O(n / \log n + r \log{9} n + z \log{9} n)$ time and $O(n / \log_{\sigma} n + r \log{8} n)$ working space for the alphabet size $\sigma$ of the RLBWT. In this paper, we present a new conversion algorithm by improving Policriti and Prezza's conversion algorithm where dynamic data structures for general purpose are used. We argue that these dynamic data structures can be replaced and present new data structures for faster conversion. The time and working space of our conversion algorithm with new data structures are $O(n \min { \log \log n, \sqrt{\frac{\log r}{\log\log r}} })$ and $O(r)$, respectively.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube