Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Efficient Continuous Multi-Query Processing over Graph Streams (1902.05134v1)

Published 13 Feb 2019 in cs.DS

Abstract: Graphs are ubiquitous and ever-present data structures that have a wide range of applications involving social networks, knowledge bases and biological interactions. The evolution of a graph in such scenarios can yield important insights about the nature and activities of the underlying network, which can then be utilized for applications such as news dissemination, network monitoring, and content curation. Capturing the continuous evolution of a graph can be achieved by long-standing sub-graph queries. Although, for many applications this can only be achieved by a set of queries, state-of-the-art approaches focus on a single query scenario. In this paper, we therefore introduce the notion of continuous multi-query processing over graph streams and discuss its application to a number of use cases. To this end, we designed and developed a novel algorithmic solution for efficient multi-query evaluation against a stream of graph updates and experimentally demonstrated its applicability. Our results against two baseline approaches using real-world, as well as synthetic datasets, confirm a two orders of magnitude improvement of the proposed solution.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.