Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Differentials and distances in probabilistic coherence spaces (1902.04836v2)

Published 13 Feb 2019 in cs.LO and cs.PL

Abstract: In probabilistic coherence spaces, a denotational model of probabilistic functional languages, mor-phisms are analytic and therefore smooth. We explore two related applications of the corresponding derivatives. First we show how derivatives allow to compute the expectation of execution time in the weak head reduction of probabilistic PCF (pPCF). Next we apply a general notion of "local" differential of morphisms to the proof of a Lipschitz property of these morphisms allowing in turn to relate the observational distance on pPCF terms to a distance the model is naturally equipped with. This suggests that extending probabilistic programming languages with derivatives, in the spirit of the differential lambda-calculus, could be quite meaningful.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.