Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Crowdsourced PAC Learning under Classification Noise (1902.04629v1)

Published 12 Feb 2019 in cs.LG, cs.DS, and stat.ML

Abstract: In this paper, we analyze PAC learnability from labels produced by crowdsourcing. In our setting, unlabeled examples are drawn from a distribution and labels are crowdsourced from workers who operate under classification noise, each with their own noise parameter. We develop an end-to-end crowdsourced PAC learning algorithm that takes unlabeled data points as input and outputs a trained classifier. Our three-step algorithm incorporates majority voting, pure-exploration bandits, and noisy-PAC learning. We prove several guarantees on the number of tasks labeled by workers for PAC learning in this setting and show that our algorithm improves upon the baseline by reducing the total number of tasks given to workers. We demonstrate the robustness of our algorithm by exploring its application to additional realistic crowdsourcing settings.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.