Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Achieving GWAS with Homomorphic Encryption (1902.04303v3)

Published 12 Feb 2019 in stat.AP, cs.CR, and q-bio.GN

Abstract: One way of investigating how genes affect human traits would be with a genome-wide association study (GWAS). Genetic markers, known as single-nucleotide polymorphism (SNP), are used in GWAS. This raises privacy and security concerns as these genetic markers can be used to identify individuals uniquely. This problem is further exacerbated by a large number of SNPs needed, which produce reliable results at a higher risk of compromising the privacy of participants. We describe a method using homomorphic encryption (HE) to perform GWAS in a secure and private setting. This work is based on a proposed algorithm. Our solution mainly involves homomorphically encrypted matrix operations and suitable approximations that adapts the semi-parallel GWAS algorithm for HE. We leverage the complex space of the CKKS encryption scheme to increase the number of SNPs that can be packed within a ciphertext. We have also developed a cache module that manages ciphertexts, reducing the memory footprint. We have implemented our solution over two HE open source libraries, HEAAN and SEAL. Our best implementation took $24.70$ minutes for a dataset with $245$ samples, over $4$ covariates and $10643$ SNPs. We demonstrate that it is possible to achieve GWAS with homomorphic encryption with suitable approximations.

Citations (26)

Summary

We haven't generated a summary for this paper yet.