Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

VC Classes are Adversarially Robustly Learnable, but Only Improperly (1902.04217v2)

Published 12 Feb 2019 in cs.LG and stat.ML

Abstract: We study the question of learning an adversarially robust predictor. We show that any hypothesis class $\mathcal{H}$ with finite VC dimension is robustly PAC learnable with an improper learning rule. The requirement of being improper is necessary as we exhibit examples of hypothesis classes $\mathcal{H}$ with finite VC dimension that are not robustly PAC learnable with any proper learning rule.

Citations (134)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.