Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VC Classes are Adversarially Robustly Learnable, but Only Improperly (1902.04217v2)

Published 12 Feb 2019 in cs.LG and stat.ML

Abstract: We study the question of learning an adversarially robust predictor. We show that any hypothesis class $\mathcal{H}$ with finite VC dimension is robustly PAC learnable with an improper learning rule. The requirement of being improper is necessary as we exhibit examples of hypothesis classes $\mathcal{H}$ with finite VC dimension that are not robustly PAC learnable with any proper learning rule.

Citations (134)

Summary

We haven't generated a summary for this paper yet.