Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

De-identification without losing faces (1902.04202v1)

Published 12 Feb 2019 in cs.CV, cs.CY, and cs.LG

Abstract: Training of deep learning models for computer vision requires large image or video datasets from real world. Often, in collecting such datasets, we need to protect the privacy of the people captured in the images or videos, while still preserve the useful attributes such as facial expressions. In this work, we describe a new face de-identification method that can preserve essential facial attributes in the faces while concealing the identities. Our method takes advantage of the recent advances in face attribute transfer models, while maintaining a high visual quality. Instead of changing factors of the original faces or synthesizing faces completely, our method use a trained facial attribute transfer model to map non-identity related facial attributes to the face of donors, who are a small number (usually 2 to 3) of consented subjects. Using the donors' faces ensures that the natural appearance of the synthesized faces, while ensuring the identity of the synthesized faces are changed. On the other hand, the FATM blends the donors' facial attributes to those of the original faces to diversify the appearance of the synthesized faces. Experimental results on several sets of images and videos demonstrate the effectiveness of our face de-ID algorithm.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.