Solving QSAT in sublinear depth (1902.03879v2)
Abstract: Among $\mathbf{PSPACE}$-complete problems, QSAT, or quantified SAT, is one of the most used to show that the class of problems solvable in polynomial time by families of a given variant of P systems includes the whole $\mathbf{PSPACE}$. However, most solutions require a membrane nesting depth that is linear with respect to the number of variables of the QSAT instance under consideration. While a system of a certain depth is needed, since depth 1 systems only allows to solve problems in $\mathbf{P{#P}}$, it was until now unclear if a linear depth was, in fact, necessary. Here we use P systems with active membranes with charges, and we provide a construction that proves that QSAT can be solved with a sublinear nesting depth of order $\frac{n}{\log n}$, where $n$ is the number of variables in the quantified formula given as input.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.