Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Assessing the Local Interpretability of Machine Learning Models (1902.03501v2)

Published 9 Feb 2019 in cs.LG, cs.HC, and stat.ML

Abstract: The increasing adoption of machine learning tools has led to calls for accountability via model interpretability. But what does it mean for a machine learning model to be interpretable by humans, and how can this be assessed? We focus on two definitions of interpretability that have been introduced in the machine learning literature: simulatability (a user's ability to run a model on a given input) and "what if" local explainability (a user's ability to correctly determine a model's prediction under local changes to the input, given knowledge of the model's original prediction). Through a user study with 1,000 participants, we test whether humans perform well on tasks that mimic the definitions of simulatability and "what if" local explainability on models that are typically considered locally interpretable. To track the relative interpretability of models, we employ a simple metric, the runtime operation count on the simulatability task. We find evidence that as the number of operations increases, participant accuracy on the local interpretability tasks decreases. In addition, this evidence is consistent with the common intuition that decision trees and logistic regression models are interpretable and are more interpretable than neural networks.

Citations (70)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.