Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multilingual Neural Machine Translation With Soft Decoupled Encoding (1902.03499v1)

Published 9 Feb 2019 in cs.CL

Abstract: Multilingual training of neural machine translation (NMT) systems has led to impressive accuracy improvements on low-resource languages. However, there are still significant challenges in efficiently learning word representations in the face of paucity of data. In this paper, we propose Soft Decoupled Encoding (SDE), a multilingual lexicon encoding framework specifically designed to share lexical-level information intelligently without requiring heuristic preprocessing such as pre-segmenting the data. SDE represents a word by its spelling through a character encoding, and its semantic meaning through a latent embedding space shared by all languages. Experiments on a standard dataset of four low-resource languages show consistent improvements over strong multilingual NMT baselines, with gains of up to 2 BLEU on one of the tested languages, achieving the new state-of-the-art on all four language pairs.

Citations (59)

Summary

We haven't generated a summary for this paper yet.