Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation of subsets of natural numbers by c.e. sets (1902.03399v1)

Published 9 Feb 2019 in cs.LO and math.LO

Abstract: The approximation of natural numbers subsets has always been one of the fundamental issues in computability theory. Computable approximation, $\Delta_2$-approximation, as well as introducing the generically computable sets have been some efforts for this purpose. In this paper, a type of approximation for natural numbers subsets by computably enumerable sets will be examined. For an infinite and non-c.e set, $W_i$ will be an $A$.maximal (maximal inside $A$) if $W_i \subseteq A$, is infinite and $\forall j (W_i \subseteq W_j \subseteq A) \to \Delta (W_i, W_j )< \infty$, where $\Delta$ is the symmetric difference of the two sets. In this study, the natural numbers subsets will be examined from the maximal subset contents point of view, and we will categorize them on this basis. We will study c.regular sets that are non-c.e. and include a maximal set inside themselves, and c.irregular sets that are non-c.e. and non-immune sets which do not include maximal sets. Finally, we study the graph of relationship between c.e. subsets of c.irregular sets.

Summary

We haven't generated a summary for this paper yet.