Generative Moment Matching Network-based Random Modulation Post-filter for DNN-based Singing Voice Synthesis and Neural Double-tracking (1902.03389v1)
Abstract: This paper proposes a generative moment matching network (GMMN)-based post-filter that provides inter-utterance pitch variation for deep neural network (DNN)-based singing voice synthesis. The natural pitch variation of a human singing voice leads to a richer musical experience and is used in double-tracking, a recording method in which two performances of the same phrase are recorded and mixed to create a richer, layered sound. However, singing voices synthesized using conventional DNN-based methods never vary because the synthesis process is deterministic and only one waveform is synthesized from one musical score. To address this problem, we use a GMMN to model the variation of the modulation spectrum of the pitch contour of natural singing voices and add a randomized inter-utterance variation to the pitch contour generated by conventional DNN-based singing voice synthesis. Experimental evaluations suggest that 1) our approach can provide perceptible inter-utterance pitch variation while preserving speech quality. We extend our approach to double-tracking, and the evaluation demonstrates that 2) GMMN-based neural double-tracking is perceptually closer to natural double-tracking than conventional signal processing-based artificial double-tracking is.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.