Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Measuring Patient Similarities via a Deep Architecture with Medical Concept Embedding (1902.03376v1)

Published 9 Feb 2019 in stat.ML, cs.AI, and cs.LG

Abstract: Evaluating the clinical similarities between pairwise patients is a fundamental problem in healthcare informatics. A proper patient similarity measure enables various downstream applications, such as cohort study and treatment comparative effectiveness research. One major carrier for conducting patient similarity research is Electronic Health Records(EHRs), which are usually heterogeneous, longitudinal, and sparse. Though existing studies on learning patient similarity from EHRs have shown being useful in solving real clinical problems, their applicability is limited due to the lack of medical interpretations. Moreover, most previous methods assume a vector-based representation for patients, which typically requires aggregation of medical events over a certain time period. As a consequence, temporal information will be lost. In this paper, we propose a patient similarity evaluation framework based on the temporal matching of longitudinal patient EHRs. Two efficient methods are presented, unsupervised and supervised, both of which preserve the temporal properties in EHRs. The supervised scheme takes a convolutional neural network architecture and learns an optimal representation of patient clinical records with medical concept embedding. The empirical results on real-world clinical data demonstrate substantial improvement over the baselines. We make our code and sample data available for further study.

Citations (113)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.