Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Software-Defined FPGA Accelerator Design for Mobile Deep Learning Applications (1902.03192v2)

Published 8 Feb 2019 in cs.CV and cs.LG

Abstract: Recently, the field of deep learning has received great attention by the scientific community and it is used to provide improved solutions to many computer vision problems. Convolutional neural networks (CNNs) have been successfully used to attack problems such as object recognition, object detection, semantic segmentation, and scene understanding. The rapid development of deep learning goes hand by hand with the adaptation of GPUs for accelerating its processes, such as network training and inference. Even though FPGA design exists long before the use of GPUs for accelerating computations and despite the fact that high-level synthesis (HLS) tools are getting more attractive, the adaptation of FPGAs for deep learning research and application development is poor due to the requirement of hardware design related expertise. This work presents a workflow for deep learning mobile application acceleration on small low-cost low-power FPGA devices using HLS tools. This workflow eases the design of an improved version of the SqueezeJet accelerator used for the speedup of mobile-friendly low-parameter ImageNet class CNNs, such as the SqueezeNet v1.1 and the ZynqNet. Additionally, the workflow includes the development of an HLS-driven analytical model which is used for performance estimation of the accelerator. This model can be also used to direct the design process and lead to future design improvements and optimizations.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube